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Escape Statistics for Systems Driven by 
Dichotomous Noise. II. The Imperfect Pitchfork 
Bifurcation as a Case Study 
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We use the general results for the escape probabilities and mean exit times 
obtained in an accompanying paper to analyze in detail a nonlinear system 
presenting an imperfect (subcritical) pitchfork bifurcation. We redraw the bifur- 
cation diagram to show the effect of the noise. To avoid spurious results we 
introduce the concept of exthlction level as the minimum possible value for the 
system, and discuss its effect on the bifurcation diagram. 
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noise, stochastic bifurcations; level of extinction. 

1. I N T R O D U C T I O N  

In an  a c c o m p a n y i n g  pape r  I~ (hereaf ter  cal led I) we s tudied  a one -d imen-  
s ional  s tochas t ic  n o n l i n e a r  d y n a m i c a l  sys tem 

:~, = F ( x , ,  ~,) (1) 

where  F is a non l inea r  func t ion  and  ~, is a symmet r i c  d i c h o t o m o u s  noise  

which can  take  values  -t-A wi th  co r re l a t ion  t ime r , . =  1/22. T i m e  be tween  

switches in the noise  value,  zt o r  - -A,  is gove rned  by the d i s t r ibu t ion  
~b(t) = 2  e x p ( - 2 t ) ,  and  the ave rage  res idence t ime in each  of  these states 
is 1/2. t2) 
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In order to obtain the escape statistics for (I)  we considered in I the 
quantities f,+-dt IXo)dt defined as the probabilities of first reaching, in the 
time interval (t, t+dt) ,  the boundary a or b starting at Xo~[a,b]  and 
taking into account the initial value of the noise ___A. By deriving the 
differential equation satisfied by the Laplace transform .7, we were able to 
get closed expressions for the escape probabilities and the conditional mean 
first passage times (MFPT).  In particular, the equations for the exit 
probabilities are [the corresponding expressions for Pj.dXo) are obtained 
switching a to b and + to - ]  

2 
e+(xo) = 1 + 2g+(a) g+(x~ (2) 

P~(xo) = I - P + ( x o )  (3) 

with 

g + ( x ) = f , l d Y F - - - ~ e x p I 2 f f  d S ( F - - - ~ + F l _ - ~ ) ]  ,4) 

where F•  +A). For the conditional MFPT we have 

T~b(Xo)-- + dy + e -M• "~ g~b(y ) + C dy e -M+- '') (5) 
Py.b(Xo) 

where 

<x, =/, ,>, _+<,,> <6) 

~:+, - , : i  x [ :,, ( , + , _ L ~ _ ~ l , , + , , ,  dye k'[• (-I') 
�9 F+(y)  F_(y )  ~ F_(y)JOy]  m,AJJ (7) 

and the constant C is fixed by the boundary conditions 

d .~ =,, 2[ P~.b Tff.b](b) - e,7.,,(b) [P~,~ T~.+,](x) �9 F _ < b )  <8) 

x=,~ P "'b T"'b](a)-- P+b(a) d [ p<,+ 7.,+,,,](x) .,t[ + + 
= F+(a) (9) 

Although the above expressions are general, to get additional insight 
we consider in this work a particular dynamical system of potential wide 
application: the imperfect (or subcritical) pitchfork bifurcation) 3'4~ It is 
important to realize that any other one-dimensional model can be analyzed 
following the same guidelines exposed here. 
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The organization of the paper is as follows. Section 2 deals with a 
qualitative discussion of the asymptotic behavior of a one-dimensional 
general system driven by dichotomous noise. In Section 3 we study in 
detail the bifurcation diagram, escape probabilities, and MFPT of the 
chosen explicit example. We also discuss in this section the influence of an 
extinction level, i.e., a threshold e > 0 below which the process is trapped, 
as happens, for instance, when the process is a chemical concentration 
x=N/V, for which a value x<e=O(1/N) is actually zero. We finally 
present our main conclusions in Section 4. 

2. ASYMPTOTIC QUALITATIVE BEHAVIOR OF 
SYSTEMS DRIVEN BY DICHOTOMOUS NOISE 

As is the case for the deterministic situation, it is very useful to know 
the general qualitative behavior of the system. For the stochastic case (1) 
the asymptotic evolution can be completely described considering the inter- 
val [a, b] between two successive zeros of F+ and F .  Let us first consider 
the situation when the boundaries of the interval are not steady solutions, 5 
i.e., they are zeros of only one of the forces. 

If both boundaries are zeros of F+ (Fig. la), the trajectories will escape 
with probability one in finite time through a, and will never return to the 
interior of the interval. If  both are zeros of F (Fig. lb), we have escape 
through b with the same conditions. 

If F ( b ) =  F+(a)= 0 (Fig. lc), the trajectories escape with probability 
one in finite time and never return to the interval, but now some trajec- 
tories will escape through a and some through b. This is a typical bistability 
region, and using (2), one can calculate the exit probability through either 
of the boundaries in terms of the initial conditions of the process x, and the 
noise ~,. 

If  F+(b)=F(a)=0  (Fig. ld), all trajectories remain confined within 
[a, b]. The interval is then an invariant set, and there are stationary, 
ergodic, Markov solutions x(t) in it. r On the other hand, for any e > 0, 
the probability of reaching b -  e starting at Xo E [a, b -  e] is 1, and so is the 
probability of reaching a + e starting at x o ~ [a  + e, b]. This means that the 
trajectories in [a, b] move in the whole interval and hence the stationary 
probability distribution has support [a, b]. 

The situation in which a boundary is a steady solution of the 
stochastic system (Fig. le) is more delicate. The stability of the steady solu- 
tion is governed by the Lyapunov exponent. As the noise is symmetric, it 

s Throughout this paper we use the terms steady solution or steady state to indicate fixed 
points of the stochastic flow, i.e., a zero of both forces F• 
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Fig. I. Possible regions with stationary pomts of the flows F• The large black points 
represent the zeros of the flows. 

can be easily shown (6~ that for the stochastic system, the Lyapunov expo- 
nent is the same as the one obtained for the same stationary solution of the 
deterministic counterpart ~?, = F(x,, 0). 

For a stable steady point, i.e., if the Lyapunov exponent is negative, 
we have exponential convergence in a neighborhood of the stable point, 
but the radius of this neighborhood depends on the realization of the 
noise, t7) This is the main difference with respect to the deterministic case, 
and it may play a significant role in the stochastic behavior, since it is easy 
to imagine a situation such that, no matter how close to the steady solution 
the system starts, there exist realizations of the noise with an attraction 
neighborhood so small that the trajectory never reaches it, and finally 
moves away from the steady point. 

If both forces are linearizable, i.e., with the same notation as I, 
F+(x)=x/oc"kO(x 2) and F_(x )=- -X/ • [ -O(x2) ,  the dominant terms in 
the integrals in (4) are those corresponding to the linearization of the 
system. Consequently, the escape probability Pb(x) from an interval [0, b] 
behaves qualitatively as in the linear case, i.e., as calculated in I, we have 
escape with probability one if 0c ~< fl, whereas for ~ > fl there is a nonzero 
probability, but less than one, of escaping through b, provided that 
F+(b) v~ 0 (see the appendix for a more detailed discussion). 

To finish this section, let us consider, for instance, that the lower 
boundary a is a steady point (Fig. le). Using the previous argument, we 
can prove that, when a is unstable, all trajectories escape through any 
upper nonstationary boundary, while if a is stable, there still is a non- 
vanishing probability of escape through b, provided that F+(b)~ O. There- 
fore we can have bistability regions connected with stable steady solutions, 
where part of the trajectories tend to the steady state and the rest go away 
from it. This is a purely noise-induced effect that can make the asymptotic 
behavior of the stochastic system completely different from the deter- 
ministic situation. 



Escape Statistics. II 687  

3.0 

X 

2.0 

1.0 

0.0 

Fig. 2. 

q,: qo 

Bifurcation diagram for the deterministic version of the system (I0). 

3. THE IMPERFECT PITCHFORK BIFURCATION 

We consider the dynamical system 

. f  = --  �89 3 + b x  2 + c (q ,  - q c ) x  (10) 

for x >/0, c > 0. The deterministic version (q, = q) of this system shows an 
imperfect (subcritical) pitchfork bifurcation, (3"4) presenting a region of 
bistability, with hysteresis, for values of the bifurcation parameter q 
between two well-fixed values qhc = q c - b 2 / 2 c  and qc (see Fig. 2). We now 
assume that the bifurcation parameter is perturbed by a dichotomous noise 
around its mean value q, i.e., q, = q + ~,, and analyze the changes in the 
bifurcation diagram. 6 

3.1. Stochastic Bifurcation Diagrams 

Notice that x = 0 is the only steady state for the stochastic system. The 
Lyapunov exponent for this solution is equal to the deterministic eigen- 
value 2de t = c ( q - q c ) ,  i.e., x = 0  is stable when q <qc  and unstable when 
q > q c .  

~A related system, the Stratonovich model obtained from (10) with b = 0, has been considered 
by Behn and Schiele (8) but focusing only on the M F P T  problem. 



688 Olarrea et  al.  

X 

X 

4.0 

3.0 

2.0 

1.0 

0.0 

$ 

j s  

t 
/ 

I 

i 

q=-'~ q-A 

....' /" 

"'... 

t 

q= 

. . . . .  �9 ' - "  

q~ q,=+A q~+A 

(a) 

F+--o 

F =o 

3.0 

2.0 

1.0 

0.0 I I 

(b) 

1, 

F+--o 

F = o  

Fig. 3. Bifurcation diagrams of  the stochastic version of  the system (10) with b = 1, c = 2.5, 
q~ = 0.6, and qhc = 0.4, depending on the intensity of  the noise: (a) A = 0.3 > q c - q ~ c  = b2/2c; 
(b) A =0 .05  <qc-qh~ [ the  scale on the vertical axis is different from (a) to make  the plot 
easier to see].  
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The nontrivial sets in which the forces F_+ point to opposite directions, 
and therefore may contain stationary Markov solutions, are those between 
the two parabolas 

1 9 -~_x- + bx + c(q-qc-I -  A )=O (11) 

and we will use the notation 

s •  b + [ b2 + 2 c ( q - q c  + A) ] 1/2 (12) 

r +_(q) = b -  [ b2 + 2 c ( q - q c  + A) ] I/2 (13) 

for the boundaries of these sets. For illustrative purposes two diagrams are 
depicted: the first one (Fig. 3a) for a value of A > qc - qhc, large enough to 
mix the effects of the two deterministic bifurcation points q~ and qhc. The 
second one (Fig. 3b), for the case A < (qc-qhc)/2, where the noise affects 
separately each deterministic bifurcation point. (The intermediate cases 
do not contain any qualitative aspect not present in the two diagrams 
selected.) In both diagrams the dotted parabola corresponds to the deter- 
ministic bifurcation diagram (included to make easier the comparison 
between the stochastic and the deterministic cases), and the dashed ones to 
the solutions of F + ( x , q ) = O  and F _ ( x , q ) = O .  There s• and r+ are the 
upper and lower branches of the external and internal parabolas (zeros of 
F§ and F_).  

For a fixed value of q, and in the limit t ~ ~ ,  the trajectories will 
either be confined between the thick lines or tend to x = 0. Projection of the 
intervals between these thick lines onto the y axis gives the exact support 
region of the corresponding stationary probability distribution. The arrows 
indicate the behavior depending on the initial conditions, and the filled 
regions, if any, denote bistability. 

The asymptotic behavior in each diagram, depending on q (mean 
value of the stochastic control parameter q,), is as follows. 

3.1 .1 .  Large  11(ll>qc-qhc). We may distinguish several situa- 
tions (Fig. 3a). 

(a) q < q / , ~ - A .  All trajectories approach the only stationary stable 
solution x = 0. 

(b) qh~ - A < q < qc - A. Again all trajectories approach 0 with prob- 
ability one. Tt/e trajectories slow down when they enter [r+(q),  q+(q)],  
since there F§ and F_ point to opposite directions [notice that both 
boundaries are zeros of F§ and all trajectories exit through r§ 

(c) q~--A < q < q c .  Every trajectory will enter the interval 
[0, s+(q)-I. On the other hand, x = 0  is stable, i.e., we have exponential 

822/79/3-4-14 
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convergence toward 0 in a neighborhood that depends on the realization of 
the noise. A simple argument based on escape probabilities shows that, 
again, the only stationary solution is x - -0 .  Notice that according to the 
results in I, for any e<s+(q), the probability that a trajectory in 
[e, s+(q))]  exists through e is one. Then, all trajectories will reach, sooner 
or later, an arbitrarily small neighborhood of x = 0, being trapped by this 
solution. 

(d) qc<q<qhc+A. Since no trajectory can leave [0, s+(q)] ,  there 
are stationary Markov solutions in this interval. Now, x = 0 is unstable and 
no trajectory is trapped. With the same argument as stated for the example 
of Fig. ld in the previous section, we conclude that the exact support of the 
stationary distribution is [0, s+(q)].  

(e) qhc+A < q < q c + A .  Trajectories starting in [0, r_(q)]  leave this 
interval through r_. Then, all trajectories with Xo > 0 will reach the interval 
[s (q), s+(q)].  A similar argument as in the previous case shows that this 
interval is the support of the distribution of stationary Markov solutions. 

(f) q~ + A < q. Stationary nonzero solutions lie in Is (q), s+(q)]  and 
their distribution has support on the whole interval. 

3.1.2. Small A(A<(qc--qhc)[2). The asymptotic behavior is 
the same as in the case of Section 3.1.1, except if qhc+ d < q < qc (Fig. 3b). 
For this q interval we have a bistability region (filled in the figure). The 
strict domain of attraction of stationary solutions in [s(q),s+(q)] is 
x>~r_(q). We get a strict domain of attraction [0, r+(q)]  for x = 0  
when qh~ + A < q < q c -  A, while if q ~ -  d < q < qc, trajectories starting at 
x s [ O, r_(q)]  can approach the upper stationary solutions or O. The prob- 
ability that such a trajectory approaches 0 is equal to 1--the probability of 
exit through r_(q). 

3.2. Escape Statistics 

In order to draw the stochastic bifurcation diagrams we made use only 
of the stability properties of the steady states, via their Lyapunov 
exponents, and of the value of escape probabilities through certain 
boundaries. In fact we only need to know if these probabilities are zero, 
one, or less than one. 

The most important information about the transient regime is con- 
tained in the probability distributions + fa ,  b" The exact knowledge of their 
zeroth-order moments, i.e., the escape probabilities, gives us the fraction of 
trajectories that escape from a region through each boundary, and the 
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higher-order moments of the distributions can be used to characterize fully 
the time in which a trajectory reaches its final stationary regime. 

Intervals where both forces F_+ point to different directions but do not 
contain stationary solutions are also of special interest. Every trajectory 
starting in such an interval will escape sooner or later, but they can be con- 
siderably delayed and the time needed to escape from these regions can be 
large enough to make them appear as metastable states. 

Next we will show the escape probability and mean escape time for 
different situations of this type located in the bistability region of the bifur- 
cation diagram in Fig. 3b. We have found problems of convergence in the 
numerical calculation of the integrals involved in the expressions for the 
escape probabilities and mean escape times. To overcome these problems 
we use a trick, explained in the appendix, that connects the escape statistics 
of the linearized system from a small interval [0, a] with the escape 
statistics of the nonlinear system from the whole interval [0, b]. 

Figures 4a and 4b correspond to a q value such that qhc+A < 
q < qc-- A, and represent the escape probability from the interval Jr+, r_ ] 
through the upper boundary and the corresponding conditional exit time, 
respectively, for some values of 2 (half of the inverse of the noise correla- 
tion time). 

The transition from constant noise 2 ~ 0 to the deterministic system 7 
2 ~ ~ can be seen in Fig. 4. For constant noise the exit through both 
boundaries is equally probable, independent Of Xo (a simple consequence of 
the averaging over the two possible initial conditions of the noise). For 
2 ~ ~ the probability is one or zero, depending on the initial condition. 

In Fig. 4c we depict the mean first passage time through any 
boundary, i.e., the escape event no matter which of the boundaries is first 
crossed, from the same interval. For large 2 values, as the initial condition 
of the trajectory is determinant for the escape event, we find a curve that 
reproduces the intuitive expectations about the escape time: it has a maxi- 
mum in the middle of the interval. On the other hand, for smaller 2 the 
behavior is completely different and the escape time has a minimum. The 
transition between having a maximum or a minimum occurs close to 
4=0.1.  

Figures 5a and 5b correspond to q , . - A  < q <qc  and represent the 
probability of escape from [ 0, r_ ] through the upper boundary r_ and the 
corresponding conditional mean first passage time. For small 2 the escape 
probability approaches (a+fl)/2ct (0.55 for the values considered in 

7 Recall that the dichotomous noise becomes a white noise when simultaneously 2 and zl 
go to infinity. If the correlation time is set equal to zero keeping A finite, one recovers the 
deterministic equation. 
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Fig. 4. (a) Escape probabilities, (b) conditional mean escape time, and (c) usual MFPT for 
q =  0.5 (qhc+ zt < q < q c - J )  and various values of 2. The other parameters are the same as 
in Fig. 3b. The interval here is [r+,  r_ ] .  
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Fig. 4. (Continued) 

Fig. 5a) as in the linear case studied in I, independent of the initial condi- 
tion of the trajectory. Observe that this value does not equal 1/2, the 
intuitively expected result for 2 =  0 (constant noise). The explanation of 
this discrepancy lies in the fact that the limits 2 ~ 0 and a ~ 0 do not com- 
mute, as was explained in I. Notice that as 3~ decreases, this escape time 
increases in a very similar way to the linear case, and its numerical values 
are considerably higher than in other events of the system. 

3.3. Extinction Level 

The use of differential equations to describe the evolution of real 
systems is only a convenient continuous approximation of a process that is 
actually discrete. This is particularly clear in the study of chemical reac- 
tions or in biological applications, where x represents the concentration, i.e., 
the number of particles/molecules/individuals divided by a characteristic 
size/volume of the system. In order to avoid spurious results with no 
relation to the system one tries to model, this fact should be kept in mind 
when analyzing the asymptotic, t ~ oo, behavior, mainly if the system is 
stochastic and its evolution may well be contrary to our deterministic 
intuition. 
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here is [ 0, r_  ]. 



Escape Stat ist ics.  II 695 

As an example of the above arguments, the deterministic version of 
Eq. (10) appears in the study of hypercycles of self-replicative molecules, (9) 
where x represents the relative concentration of certain molecules in the 
hypercyclic organization, i.e., those molecules with a catalytic relationship 
that improve their self-reproductive rates. To avoid the problem of con- 
sidering too low concentrations for which hypercyclic growth seems to be 
unrealistic, a level of extinction, i.e., a fixed minimal concentration x = e as 
representative of the extinction of the species instead of 0 was introduced 
in ref. 10. 

In our case of dichotomous perturbations we can use the general exact 
results of I to find the behavior of the system including an extinction level 
by considering the escape statistics from an interval [e, b]. Exit through e 
obviously means extinction, whereas b can be an appropriate threshold to 
ensure that the system reaches a stationary state far from the extinction 
level. Several effects can be induced, and we focus our attention on those 
appreciable enough even for a very small extinction level e. 

First, let us analyze how the inclusion of this effective extinction level 
modifies the bifurcation diagram of Fig. 3a corresponding to a large value 
of the noise. It is clear that regions where both forces point to the same 
direction are not affected. Now consider q between qc and qj,~ + A. The sup- 
port of the stationary distribution is the whole interval [0, r+ ], but, since 
the system is ergodic, every trajectory moves around the entire interval and 
hence they will reach, sooner or later, the extinction level. Then, for this 
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Fig. 6. The same bifurcation diagram as Fig. 3a, modified by the inclusion of an extinction 
level. The shaded region is the bistability area created by the presence of the extinction level. 
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value of q there are no stationary solutions different from the total extinc- 
tion. For q between qhc + A and qc + A the stationary state was an invariant 
density defined on the interval J r§  r_ ] and every trajectory moved inside. 
However, when considering an extinction level, these regions become 
bistability regions where, depending on the initial condition, trajectories 
have a nonzero probability of reaching the extinction level. The resulting 
bifurcation diagram is depicted in Fig. 6. Note that these are drastic 
modifications of the asymptotic behavior of the system that occur no 
matter how small e is. 

The second relevant effect is related to the noncommuting limits 2 ~ 0 
and a ~ 0 discussed previously. Figure 7 shows that, for the probability 
P b  (x0) of escaping through the upper boundary, when the noise is initially 
--A, the limit 2--+ 0 abruptly changes when including an extinction level. 
The reason is that 2 ~ 0 is the constant noise limit and the process x, will 
reach the extinction level before any switch of the noise. This does not 
happen whithout an extinction level, since then the process does not reach 
0 in finite time and therefore, for 2 small but nonzero, there is always a 
nonvanishing probability of switching and moving upward to the exit. 
Note that here the effect is also independent of the value of e: no matter 
how small e is, in the limit 2--+ 0, P~-(x o) vanishes. 
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Fig. 7. Effect of the extinction level on the probabilites of Fig. 5a. 
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4. CONCLUSIONS 

We have analyzed in detail the behavior of a dynamical system that 
under deterministic conditions presents an imperfect pitchfork bifurcation 
when the control parameter is perturbed by a dichotomous noise. Using 
the general results contained in I on exit probabilities and the stability of 
the fixed points of the stochastic flow, we can draw the new stochastic 
bifurcation diagram as a function of the mean value of the fluctuating 
control parameter and identify the regions where the deterministic and the 
stochastic behavior are different. In particular, it is interesting to note that 
when the noise can take values in a range larger than the deterministic 
bistability region, i.e., A > q c - - q h c ,  the bistability area disappears com- 
pletely, whereas if A is smaller, the bistability region exists, but is reduced 
with respect to the deterministic one. The introduction of an arbitrary level 
of extinction, i.e., a minimum value below which the system is absorbed, 
also drastically modifies the bifurcation diagram, by creating a new 
bistability area, not present in the deterministic nor in the large-range 
stochastic situations. As a second effect of the level of extinction P ~ ( x o ) ,  . 

the escape probability through the upper boundary of an interval when the 
initial condition of the noise is --A, drops to zero when the correlation 
time of the noise increases. 

We would like to emphasize that, as already indicated in I, the results 
obtained in this work, together with the standard calculation of the 
stationary probability distributions with support in the invariant sets, t21 
lead to a complete description of the evolution of the stochastic system. 

As a final remark, we conjecture that qualitatively similar results 
should be obtained when considering more general bounded noises, such 
as, for example, the diffusion stochastic process considered in ref. 10. 
Therefore, the dichotomous noise could be taken as a useful guide in the 
analysis of more realistic models and/or noises. 

A P P E N D I X  

The integrals involved in the calculation of the exit probabilities and 
mean escape times considered in the paper are convergent, but some of 
them are improper at a = O, and their numerical solution is a difficult task. 
In this appendix we propose a method based on probabilistic arguments to 
solve the problem (see I for notation). 

Let us decompose the interval [0, b] into two disjoint intervals: a 
small one around O, [0, a] ,  and the rest, [a, b]. A trajectory starting at 
x 0 > a  can cross b in two ways: either the trajectory crosses b without 
crossing a or it crosses b after crossing a. Taking into account that a is 
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always crossed with a noise value + d if upward and - d  if downward, the 
last assertion implies for the probability densities of first reaching a or b the 
following relation: 

f b  +" [~ [ Xo) =f~-" t,',~a(tlxo) 

+ IIIt dt , dt 2 dt 3 f +" t "'h J( t l Ix0) 

x f,'~" [~176 2 ]a) f h  +" [~ 3 l a) 

where we have indicated as superscripts the intervals of escape. Applying 
the Laplace transform, we get an algebraic relation 

f : ,  to, bl(s Ix0) = f : "  t,,,~l(s I xo) 

+ f,7" ta, bl(s I xo) fS-" t~ l a) f,T" t~ a) 

The idea is to set a very close to zero in order to use the results obtained 
in I for the linearization of the system. The moments of the escape distribu- 
tions corresponding to the interval [a, b] can be calculated with the usual 
integration algorithms. The only remaining unknown quantity in the last 
expression is fl+, �9 t~ a), but it can be obtained by setting x = a in the 
same equation, 

f l+ , t~ ) = 
f ~" t~ ) 

- + ,  [a,b] 1 - - f o  ( s la) f2" t~  

The same procedure can be used with fb't~ After some 
calculations we obtain the final expression for the escape probabilities and 
the mean escape times: 

P~' t " b ] ( a )  P,7' t ~ 
Pt~~176 = Pt':'~(x~ + et:'"~(x~ 1 -e;----~, t~ e:---:t~ 

1 
T~,~ p~o,b](Xo) [P[b~'b](Xo) T[b~'hl(Xo) 

+ [ T[aa'b](Xo) + T~-' [~ + T~' t~ 

x P~t"'bl(Xo) P~" t~ P{" t~ 
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where 

p+,t, , ,b](a ) 
P~-" t~ = 1 - PS" [~ P~+" ta'b](a) 

T~" t~ = T~-' r"'bg](a) + [ T +' [~ + T O" t~ 

p~, t~ p+, t-.~a(a) 
x 1 - -P : '  t~ ef" to'b](a) 

As we pointed out before, the stability of x = 0 depends on the sign of 
the linear terms in the forces F+_ and their relative strength. Let us suppose 
again that these terms are of the form x/ot,-x/fl,  and that we have an 
upper boundary b such that the interval [0,  b]  does not contain any other 
zero of F•  When �9 ~< fl we have Pf" [0,o] = 1, and therefore 

P[bO'b](Xo) = 1 

On the contrary, when ~ > f l ,  O<P~~ 1, i.e., there is a nonzero 
probability, but less than one, of escaping through b. 
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